Early alterations in the electrophysiological properties of rat spinal motoneurones following neonatal axotomy

نویسندگان

  • George Z Mentis
  • Eugenia Díaz
  • Linda B Moran
  • Roberto Navarrete
چکیده

Early in development, motoneurones are critically dependent on their target muscles for survival and differentiation. Previous studies have shown that neonatal axotomy causes massive motoneurone death and abnormal function in the surviving motoneurones. We have investigated the electrophysiological and morphological properties of motoneurones innervating the flexor tibialis anterior (TA) muscle during the first week after a neonatal axotomy, at a time when the motoneurones would be either in the process of degeneration or attempting to reinnervate their target muscles. We found that a large number ( approximately 75%) of TA motoneurones died within 3 weeks after neonatal axotomy. Intracellular recordings revealed a marked increase in motoneurone excitability, as indicated by changes in passive and active membrane electrical properties. These changes were associated with a shift in the motoneurone firing pattern from a predominantly phasic pattern to a tonic pattern. Morphologically, the dendritic tree of the physiologically characterized axotomized cells was significantly reduced compared with age-matched normal motoneurones. These data demonstrate that motoneurone electrical properties are profoundly altered shortly after neonatal axotomy. In a subpopulation of the axotomized cells, abnormally high motoneurone excitability (input resistance significantly higher compared with control cells) was associated with a severe truncation of the dendritic arbor, suggesting that this excitability may represent an early electrophysiological correlate of motoneurone degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nicotinomid Adenin Dinucleotide Phosphate-Diaphorase (NADPH-d) Activity and CB-28 kDa Immunoreactivity in Spinal Neurons of Neonatal Rats after a Peripheral Nerve Lesion

Our previous studies have shown that median and ulnar nerve lesion induced calbindin (CB) immunoreactivity in some injured motoneurons in developing rats. Motoneuron death induced by sciatic nerve transection in neonatal rats has been related to induction of neuronal isoform of nitric oxide synthase (nNOS). The present study investigated whether expression of CB and nicotinomid adenin dinucleot...

متن کامل

Time Course of Axotomy-induced Changes in Synaptophysin Pattern and Synaptic Reaction of Spinal Motoneurons in Adult Rat

Background and Objective: Evaluation of degenerative changes of motoneurons and their related synapses can be useful in understanding the mechanisms of neurodegenerative diseases and their potential treatment. The present electron microscopic and immunohistochemical study investigates the axotomy-induced...

متن کامل

Deprenyl increases synaptophysin and choline acetyltransferase in rat after sciatic nerve axotomy

Neuroprotective effect of deprenyl on motoneurons of spinal cord after axotomy of peripheral nerves such as sciatic has been well established. Deprenyl is an inhibitor of monoamine oxidase type-B (MAO-B). The main function of this agent is the release of neurotransmitters from pre-synaptic terminals. Acetylcholine is a neurotransmitter that is synthesized by choline acetyltransferase (ChAT) and...

متن کامل

The Recurrent Inhibition of Monosynaptic Reflexes and Its Alteration after Peripheral Nerve Crush in Decerebrate Rats

During a critical period of development in the rat, nerve injury results in a permanent enhancement of polysynaptic reflex responses in reinnervated muscles (Navarrete et al., 1990). Such enhanced reflex activity may result from alterations in intrinsic motoneuronal properties (e. g., input resistance and afterhyperpolarization) and from changes in the behaviour of interneuronal pathways. Studi...

متن کامل

Upregulation of heat shock proteins rescues motoneurones from axotomy-induced cell death in neonatal rats.

Heat shock proteins (hsps) are induced in a variety of cells following periods of stress, where they promote cell survival. In this study, we examined the effect of upregulating hsp expression by treatment with BRX-220, a co-inducer of hsps, on the survival of injured motoneurones. Following sciatic nerve crush at birth, rat pups were treated daily with BRX-220. The expression of hsp70 and hsp9...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Physiology

دوره 582  شماره 

صفحات  -

تاریخ انتشار 2007